# A review of the methodologies for modelling cycling within junction appraisal

Modelling on the move seminar 14<sup>th</sup> January 2014

John Parkin

John.parkin@uwe.ac.uk

Professor of Transport Engineering, Centre for Transport & Society





#### **Outline**

#### Modelling

- 1. Deterministic modelling
- Micro-simulation modelling
- 3. Cellular automata modelling

Inputs to modelling

- 5. Positioning on links (unavailable on web version)
- 6. Positioning at junctions (unavailable on web version)





### 1 Deterministic modelling

Priority junctions, roundabouts and signals based on predictive equations (Kimber and Coombe, 1980; Kimber, 1980; and Vincent et al., 1980)

- Time gaps not easy to measure
- Results sensitive to values used
- Rules for more than one stream unclear
- Gap acceptance affected by geometry
- In congested conditions, more interactive relationships





|                    | Scraggs | Webster   | Kimber et al. | TfL (2010) | Wang et al. |
|--------------------|---------|-----------|---------------|------------|-------------|
|                    | (1964)  | and Cobbe | (1985)        |            | (2008)      |
|                    |         | (1966)    |               |            |             |
| Passenger car unit | 1.00    | 1.00      | 1.00          | 1.00       |             |
| Medium goods       | 1.75    | 1.75      | 1.5           | 1.5        |             |
| vehicles           |         |           |               |            |             |
| Heavy goods        | 1.75    | 1.75      | 2.3           | 2.3        |             |
| vehicles           |         |           |               |            |             |
| Buses and coaches  |         | 2.25      | 2.0           | 2.0        |             |
| Articulated bus    |         |           |               | 3.2        |             |
| Motorcycles        |         | 0.33      | 0.4           | 0.4        |             |
| Pedal cycles       |         | 0.2       | 0.2           | 0.2        | 0.28        |
|                    |         |           |               |            | 0.33        |
|                    |         |           |               |            | (turners)   |

- Typically based on headway ratio, problematic for two wheelers
- TfL suggests when cycle flow >20% 'disproportional effect on modelling results'







$$q_{B-A}^{S} = X_1 \{627 + 14W_{CR} - Y[0.364, q_{A-C} + 0.144, q_{A-B} + 0.229, q_{C-A} + 0.520, q_{C-B}]\}$$

$$X_1 = \{1 + 0.094(w_{B-A} - 3.65)\}\{1 + 0.0009(V_{rB-A} - 120)\}\{1 + 0.0006(V_{lB-A} - 150)\}$$







$$Q_e = k(F - f_c. Q_c)$$









## Centre Transport Society

### 2 Micro-simulation

#### Models estimate:

- Target speed (limit, gradient, geometry, maximum vehicle speed)
- Car following
- Lane changing / overtaking
- Gap acceptance



| Title      | Country of origin | Limitations                                                                                                                                                  | Reference                          |
|------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| HUTSIM     | Finland           | Users need to provide bicycle behaviour characteristics; interactions with motor vehicles only at crossings                                                  | Kosonen (1996)                     |
| FLEXSYT-II | The Netherlands   | Bicycles not allowed on same section as<br>motor vehicles; bicycle speeds not<br>affected by surroundings, hence speed<br>and acceleration fixed             | Taale (1997)                       |
| BICSIM     | USA               | Bicycles separately modelled. But specific bicycle following, gap acceptance, lane changing, acceleration and deceleration need to be based on field studies | Faghri and<br>Egyhaziova<br>(1999) |

### Speed and acceleration



(Raksuntorn, 2002)

#### Speed

$$V_n = 15 - 25 \, km/h$$

Junction width 100 feet  $V_{max} = 1.38. V_n$ 

Junction width 50 feet  $V_{max} = 1.68. V_n$ 

#### **Deceleration**

$$V_x = 0.216. V_n. X^{1/3}$$



#### Acceleration

Junction width 100 feet

$$V_x = 0.223. V_n. X^{1/3}$$

Junction width 50 feet

$$0 \le X < 35ft$$
  $V_x = 0.212. V_n. X^{1/2}$ 

$$35 \le X < 50 ft$$
  $V_x = 1.85. V_n - 0.017. V_n. X$ 



### Overtaking model



Raksuntorn (2002)

$$P(passing) = \frac{\exp(1.388(V_f - V_l) - 0.800.V_l^{2/3})}{1 + \exp(1.388(V_f - V_l) - 0.800.V_l^{2/3})}$$

#### Probability of passing, lead bicycle 22 km/h



### Following model

Centre Society

Faghri and Egyhaziova (1999)

Assumes 'car following model'



### Bicycle headways



Raksuntorn (2002)

- Assumes influence when within 70 ft (21 metres)
- Data suggests no correlation with difference in braking distances, and 95% headways greater than 9 feet, but model formulation as follows:



### Bicycle following model



#### General Motors model of form

$$a_t(t + \delta t) = \frac{\alpha_0}{h(t)} [V_l(t) - V_f(t)]$$

Raksuntorn's (2002) model:

$$V_f(t + \delta t) = 0.98 \cdot V_f(t) + 0.02h(t) + 0.51(V_l(t) - V_f(t))$$

GM model overestimates distance headway and underestimates following velocity

### Arrivals, gaps, stopped distances



- exponential, gamma or Weibull
- Probability of car turning right across gap in bicycle traffic
- Lateral (0.72 to 2.87 feet car to bicycle) and longitudinal stopped distances (4.2-4.4 feet bicycle to bicycle)

### Cellular automata models



(after Vasic and Ruskin, 2012)

|                       | Car             | Bicycle         |
|-----------------------|-----------------|-----------------|
| V <sub>MAX</sub>      | 3               | 2               |
| Cell size             | 7.5 metres      | 3.75 metres     |
| 1 sec time step gives | 81 kph (50 mph) | 27 kph (17 mph) |

| Bicycle track |  |
|---------------|--|
| Car track     |  |
| m+3 m+2 m+1   |  |

| /////////////////////////////////////// | /////////////////////////////////////// |
|-----------------------------------------|-----------------------------------------|
| n+7 n+6 n+5 n+4 n+3 r                   | n+2 n+1 n                               |

| Bicycle track |
|---------------|
| Car track     |

| m+3     | m+1 m                 |      |
|---------|-----------------------|------|
| n+7 n+6 | n+5 n+4 n+3 n+2 n+1 n | //// |

# Centre for Transport Society

#### Formulation of CA

- Vehicle motion: each vehicle is advanced v<sub>i</sub> cells along the track per unit time
- 2. Acceleration: if  $v_i < v_{Li}$  and  $v_i < d_i$ ,  $v_i \rightarrow v_i + 1$ .
- 3. Slowing (due to cars ahead): if  $v_i < v_{Li}, v_i \rightarrow d_i$
- 4. Randomisation: if  $v_i > 0$ , with probability  $P_R$ ,  $v_i \rightarrow v_i 1$ .

#### Where

 $v_i$  is the velocity of the  $i^{th}$  vehicle,

$$V_{l,i} = min(v_{max}, d_i)$$

 $v_{MAX}$  is the maximum velocity,

 $d_i$  is the number of free cells between the  $i^{th}$  vehicle and the vehicle ahead

 $P_R$  is the randomisation parameter (assumed to be 0.1)

Rule 1 updates position, Rules 2-3 update speed

(From After Nagel and Schreckenberg, 1992)



Modification for conflict:  $v_{Li} = min(v_{max}, d_i, v_L^T(d_i^T), v_L^C(d_i^C), v_L^B(d_i^B))$ 

i.e. limiting value on speed includes, maximum speed, distance to vehicle in front, speed limit imposed by distance to turn, or distance to conflict, presence of bicycle in adjacent track



#### Centre for Transport S Society

#### Some conclusions

- There is great variability in cycle users and drivers reactions to each other
- PCU factor for cycle traffic will likely vary by type of user and volume of cycle traffic
- Start and end lost times different for cycle traffic (quicker to respond and more variable response)
- Cycle following rules need more research
- More on cycle rider gap acceptance
- More on cycle to cycle proximity longitudinally and laterally

# Centre Transport Society

#### References

- Biham, O., Middleton, A., Levine, D. (1992) Self-organization and a dynamical transition in traffic-flow models, Phys. Rev. A 46 R6124–R6127
- Botma, H. (1995) Method to cetermine level of service for bicycle paths and pedestrian-bicycle paths. Transportation research record 1502, pp38-44.
- Botma, H. and Papendrecht, H. (1991) Traffic operation of bicycle traffic.
  Transportation research record 1302, pp65-72
- Botma, H. and Papendrecht, H. (1993) Operational quality of traffic on a bicycle path.
  ITE compendium of technical papers, 63<sup>rd</sup> Annual meeting.
- Faghri, A. and Egyhaziova, E. (1999) Development of a computer simulation model of mixed motor vehicle and bicycle traffic on an urban road network. Transportation research record 1674, pp86-93.
- Harkey, D.L. and Stewart, R.J. (1997) Evaluation of shared use facilities for bicycles and motor vehicles. Transportation research record 1578, pp111-118.
- Khan, S.I. and Raksuntorn, W. (2001) Characteristics of passing and meeting manoeuvres on exclusive bicycle paths. Transportation research record 1776.
- Kimber, R. (1980) The traffic capacity of roundabouts Transport and Road Research Laboratory report LR942.
- Kimber, R. and Coombe, R.D. (1980) The traffic capacity of major/minor priority junctions. Transport and Road Research Laboratory report SR582.



- Kimber, R., McDonald, M. and Hounsell, N.B. (1985) Passenger car units in saturation floes: concepts, definition, derivation. Transportation research 19B (1), pp39-61.
- Kosonen, I. (1996) HUTSIM-simulation tool for traffic signal control planning. Helsinki University of Technology Transportation Engineering
- Nagel, K. and Schreckenberg, M. (1992) A cellular automaton model for freeway traffic, J. Phys. I 2 2221–222
- Navin, F.P.D. (1994) Bicycle traffic flow characteristics: experimental results and comparisons. Institution of Transportation Engineers Journal 63 93), pp31-37.
- Opiela, K.S. and Snehamay, K. (1980) Determination of the characteristics of bicycle traffic at urban intersections. Transportation research record 743.
- Raksuntorn, W. (2002) A study to examine bicyclist behaviour and to develop a microsimulation for mixed traffic at signalized intersections. Doctoral Thesis, University of Denver, Colorado.
- Raksuntorn, W. (2003) Saturation flow rate, start-up lost time, and capacity for bicycles at signalized intersections. Transportation research record. No. 1852, p. 105-113.



- Scraggs, D.A. (1964) The passenger car unit equivalent of a heavy vehicle in singlelane flow at traffic signals. Department of Scientific and industrial research. Laboratory Note No. LN/573/DAS (not for publication)
- Taale, H. et al. (1997) FLEXSYT-II User Manual. The Netherlands
- Taylor, D.B. (1998) Contributions to bicycle-automobile mixed-traffic science: behavioural models and engineering applications. PhD thesis, Department of Civil Engineering, University of Texas at Austin, Texas.
- Taylor, D.B. and Davis, W.J. (1999) review of basic research in bicycle traffic science, traffic operations, and facility design. Transportation research record 1674 Paper No. 99-0501 pp102-110.
- Transport for London (2010) Traffic Modelling Guidelines TfL Traffic Manager and Network Performance Best Practice. Version 3.0 Transport for London. www.tfl.gov.uk
- Vasic, J. and Ruskin, H.J. (2012) Cellular automata simulation of traffic including cars and bicycles Physica A 391 2720-2729
- Vincent, R.A., Mitchell, A.I. and Robertson, D.I. (1980) User guide to Transyt Version 8 Transport and Road Research Laboratory report LR888
- Wang, D., Feng, T. and Liang, C. (2008) Research on bicycle conversion factors. Transportation research Part A 42 (8), pp1129-1139.
- Webster, F.V. and Cobbe, B.M. (1966) Traffic signals. Road research laboratory Technical Paper 56. bettertogether 22/